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A ComparisonofSorts

John P. Grillo
Dept. of Computer Information Systems
West Texas State University
Canyon, Texas 79016

When students in programming courses compare
notes, they find that there is a fairly small set of
computer problems which are given as programming
assignments in practically all courses. Here is a sam-
pling of these Golden Oldies. The Indian Problem: If
the Indians had deposited the $24 they got for Man-
hattan Island in 1620 and earned 6% interest com-
pounded yearly, what would that deposit be worth
now? Fibonacci Numbers: What is the largest Fibo-
nacci number less than a given number? Grain of
Wheat, or Doubled Penny: Starting with one grain of
wheat, or one penny, and doubling the number every
day, how many whatevers are there on the 30th (64th)
day? Table Printing: Produce as output a table of the
[squares, square roots, trig functions] of numbers
between 1 and 50. The Sort: Sort the data provided
in ascending (descending) order and print it.

All of these have innumerable variants and all,
except for the sort, are based on relatively obvious,
simple, or already familiar looping algorithms which
show off the computer's ability to handle simple
loops. The sort is a different type of problem: (1) the
output can be achieved using any of a number of
aigorithms, but not any are truly easy to understand;
(2) the object of the problem is not to produce the
output as much as to learn the algorithm and to op-
timize computer efficiency by minimizing core use
and execution time; (3) the algorithm used is often
called a production algorithm, one which is used
widely in application programming.

All too often students are presented with the sim-
plest algorithm because it is easiest to learn. That is
true enough, but unfortunately, that algorithm is the
one students tend to use any time they have to sort,
just because they know it. This “horseblinders” result
would be of no consequence were the algorithm
learned the best one, or even one of the better ones.
But the algorithm taught, and learned, is usually the
worst one, the bubble sort.

This technique is called bubble sorting because
of the way it “floats” the smalier numbers to the top,
just like bubbles in a column of water. It might be
better called the “trouble sort,” though, because of all
the machinations that go on at the lower level just
to float that number up there.

Slightly better, in terms of efficiency, is the de-
layed replacement sorting technique. This is really a
modification of the bubble sort, except that the
smallest of two numbers is not “floated” until it is
found to be the smallest of all; whereas the bubble
sort floats the smaliler of a pair, then checks another
pair, the delayed replacement sort checks all pairs
and floats only the one found to be the smallest.
This greatly reduces the number of executions of
the switching statements. The number of pairwise
comparisons is exactly equal both in the delayed re-
placement sort and in the bubble sort, and that num-
ber rises exponentially as the number of elements
to be sorted rises.

An adaptation by Marlene Metzner (2) of the Shell
sort overcomes both difficulties: the number of com-
parisons is roughly ten times the number of elements
to be sorted, and the number of switches is roughly
five times the number of elements, if that number of
elements is less than 1000. This ratio of comparisons
to switches makes intuitive sense, since one would
expect that a pair of numbers chosen for possible
switching would require switching only half the time.

Appended to this article is a listing of a BASIC
program which was used to test sorting algorithms.
As an added benefit, the random numbers produced
are made to approximate a normal distribution and
are truncated. Thus the output from this program
can be used as a sample of scores with known
statistics. By timing the three methods of sorting
using various sample sizes, some estimates of sort-
ing time were calculated. Figure 1 shows graphicaily
the effect of algorithm selection on sorting time.

Figure 1 —Observedr Sort Times
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Figures 2, 3, and 4 are the flowcharts for the
three sorting algorithms. All are written to sort a
table of N data entries in a table D without use of
any additional array space; that is, they are all
replacement sorts—array D starts unsorted and be-
comes sorted. The bubble sort, or Sort |, has as a
characteristic feature the use of only two indices, |
and J, and no checking of indices except against N,
the number of elements being sorted. The delayed
replacement sort, Sort ll, uses three indices, |, J, and
K, and only one of them is compared to N. Note aiso
that in Sort Il discovering that D(J) is greater than
D(l) does not force a switch; much more index
checking is performed first. The Shell-Metzner sort,
Sort Ill, at first glance seems to have regressed to
Sort | in that if D(l} is greater than D(L), they are
switched. But though this is true, the comparison is
performed only after much checking, using not 2, not
3, but 5 indices—I, J, K, L, and M. As a hint in be-
ginning to understand Sort Ill, consider that the first
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compared pair of 100 numbers is the 1st and 51st;
the second is the 2nd and 52nd; etc.

Table | summarizes information on execution of
each of the sorts on sets of 10 to 2,000 elements.
These elements, or numbers to be sorted, were gen-
erated by the program listed in the appendix, so
they were normally distributed. The table lists three
numbers for each set of elements and each algo-
rithm: T = time of execution in milliseconds on a
DECSystem 10 Kl processor; S = number of times
pairs of elements were switched; C = number of

Table I—Sort Execution Data

Approximate

N Proportionality to N
10 20 50 100 200 500 1,000
T 33 84 450 | 1,700 7,500 34,000 | 150,000 .385 N1-o
SORT 1
S} 19 |10 620 | 2,700 | 11,000 63,000 | 250,000 .25 N2
BUBBLE

Cya4a5 |90 1,225 | 4,950 | 19,900 | 124,750 | 499,500 .5 N

SORT 11 TV 50 250 830 4,100 20,000 75,000 206 N'-°
DELAYED S 5 17 46 90 190 490 990 N

REP'T, C| 45 [190 | 1,225 | 4,950 | 19,900 | 124,750 | 499,500 .5 N2

SORT IIT T | 17 34 130 320 600 1,600 3,700 [1.18 Ni-2®
SHELL- s|3 34 150 450 930 2,600 5,900 |2 N'-1*
METZNER cl 3 85 320 900 2,100 5,800 13,000 4 n2-1®




times pairs of elements were compared. All values
in the table were rounded to two significant d|g|ts
for clarity, except the number of comparlsons in
Sorts | and Il, which are always-exact ( (N2—N)/2 ).

One of the effects of sorting normally distributed
numbers is evident in Table |: the number of
switches in Sorts | and Il is less than half the num-
ber of compares by an amount equal to the pairs
which were equal. That is, almost half of the com-
pared pairs were right to begin with (A< B); almost
half had to be switched (A> B); and some were left
alone because they were equal (A=B). For this
reason the proportionalities shown may increase
slightly when these sorts are used on data with very
few equal values.

In both Sort | and Sort Il all possible pairs of
elements were compared once; in 10 numbers the
45 comparisons are: 9 of #1 with the remaining 9;
8 of #2 with the remaining 8; 7 of #3 with the re-
maining 7; etc., such that the number of com-
parisons C = 9+8+7+6+5+4+3+2+1 = 45.*

In Sort Il the number of switches is always less
than the number of elements. This is because in this
algorithm a switch is executed only when an ele-
ment has found its place.

In Sort lll many elements must be switched more
than once, but far fewer compares are executed. One
may consider this algorithm to be intelligent enough,
so to speak, that it is aware that if A< B and B<LC
there is no reason to compare A to C; A must be
smaller.

Table | also indicates the approximate quan-
titative relationships between N and C or S for
each of the algorithms. A curvilinear regression anal-
ysis (1) was performed on the sort times to determine
the equations which would predict the sort times
given the number of elements. In each of the equa-
tions listed below, T is the time in milliseconds, and
N is the number of elements. The coefficient and
exponent are given to three significant digits only,
as this is empirical evidence.

SORTI: T = .385 N8
SORTIl: T = .206 N'®
SORTIN: T =1.18 N“®

Note that the time-saving with Sort Il over
Sort | is in the coefficient, and that it is in the ex-
ponent with Sort Ill. Figure 5 is a transposed plot

of the data in Figure 1, but this time on log-log
paper. It is evident that Sorts | and Il have equal
slopes (thus equal exponents) and that Sort lll has
a reduced slope. -

One cannot resist adding as Table |1l some sorting
times for very large arrays using these three tech-
niques. Of course, one must have available a great
deal of memory to perform some of these sorts; and
only under special circumstances and with additional
merging algorithms can a programmer use these
sorting techniques for large disk or tape sorts. A
clear indication of the advantage of Sort Il over
both Sorts | and Il can be calculated using data in
Tables | and Il. For every tenfold increase in ele-
ments to be sorted, there is a seventyfold increase
in sort time using | and i, but only a fifteenfold in-
crease using Sort Ill.

* This is another classi¢ programming problem, the
Sum-of-digits. Most teachers force their students to
program the brute force sum to teach looping tech-
niques rather than Gauss’ elegant Sum = (N2+N)/2.

FIGURE V--L0OG-LOG TRANSFORMATION OF SORT TIME VS SORT SIZE
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TABLE II--TIMING OF VERY LARGE CORE SORTS
N Sort I Sort 11 Sort III
10,000 2.5 hrs 1.3 hrs 1 min
100,000 7.1 days 3.8 days 15 min
1,000,000 490 days 260 days 3.9 hrs
10,000,000 93 years 50 years 2.5 days

When this study was started, its purpose was to
determine the crossover point at which the Shell-
Metzner sort would begin to be more efficient than
either of the other two. After all, it does take more
coding space, and it does execute more statements
given very small sorts. But after dealing with all
three of these algorithms, it became more and more
obvious that any production core sort code should
use Sort lll. The only excuse, weak as it is, for using
either of the other two would be to teach the basics
of sorting algorithms, or of following a flowchart.
And under no circumstances should a student ever
be taught the bubble sort or the delayed replace-
ment sort without being presented the Shell-Metzner
sort as well.
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FRINT "THIS FRUGRAM FROQDUZES A NORMALLY DISTRISUTED SAMPLE"
FRINT "OF UF TO za@d POSITIVE INTEGERS ARCCORDING TO YOUR
FRINT
FRINT "0O YOU WISH TO TIME SORTING ALGURITHMS™,

INFUT Z#

IF S$CH"YESY GOTO 15@

FRINT “SELECT SORTING ALGORITHM:"
FRINT

FRINT “TYFE TO UsE"

FRINT " B EUBELE"

FRINT " R DELAYED REFLRCEMENT®

FRINT " & SHELL - METZNER"

INFUT C¢

PRINT “TYFE THE FOLLOQWING: SAMFLE SIZE. MEAN. STL. [DEY. "

Ce=54=F=0

M1=TIH

INFUT Y. M. 8

IF Y{=z2e@@ GO TO0 24@

FRINT “MRXINMUM SIZE = 2a@a”
GO TO 1&@

SCOMPUTE RANDOM NGS. USING CENTRAL LIMIT THEQREM TECHNIQUE

FOR N=1 TO ¥

R=@ PRy

it PROGRAM To TEST
. SORT ALGORITHM S

T+ SR -g

Nr=INTORD
N
4 Ni®RZOND
HE®
KE=TIN-x1
FRINT
FRINT
FRINT
FRINT Y'REANDOM NUMBERS GENERATED IN"HZ"SECONDZ "
FRINT
Yasiy-10
PRINT “"MEAN ="MZ.
FRINT ", STD. DEY. ="SQR{WE)
FRINT
FRINT
FRINT “WHAT FORM OF QUTRUT DO YOU WANT®"
FRINT
FRINT "TVYFE IF QU WARNT®
FRINT " G HISTOGRAM ON TTY"
PRINT " T NUMEERS ON TTY"
FRINT " F NUMBERS ON FILE"
FRINT " TS NUMEERS ON TTY., EZQRTED"
FRINT " F& NUMBERS ON FILE. ESOQRTED"
INFUT Gf
IF LEFT$00¢, 10<"F" GQTO ex@
FRINT "WHHT IS THE NAME OF THE FILE":
INFUT F¢
FILE #1. F¢
SCRARTCH #1
IF O¢ G" GOTQ &&@
IF F=1 GOTO &c@
GOSUR 1236@
GOSUR 1@4@
GOTO 9@
IF RIGHT$:Q¢, 13(>"5" GOTO F1@
IF F=1 GOTO Fie
GOSUR t12z@ -
IF LEFT${0%, 10 "F" GOTO &@a
FOQr A=1 TO Y BY 1@
FOR E=A TO A+9
IF B>Y GO TO S:@
FRINT #4, R2(E)Y;
NEXT E
FRINT #1
NEXT A
GOTO S:@
IF LEFT$(Q$,10="T" GOTQ &GS@
IF LENC@$ >0 GOTO &X@
STOF
FRINT “IMFROFER QUTPUT CODE: TRY AGARIN
GOTO 47@
FOR A=1 TO ¢ BY 1@
FOR EB=A TO A+9
IF EB>Y GOTO Sz@
PRINT R2CBY;
NEXT E
PRINT
NEXT A
FRINT
FRINT "DIFFERENT CQUTFUT":
INFUT Q¢
IF ¢ = "YES" GOTO Si@
IF Q${o>"NO" GOTO Gea
FRINT "DO YOU WANT ANCTHER SET OF NUMEBERS":
INFUT T¢
IF T$="YES" GO TO 15@
@ STOoF

(<]

DEMANDS.

1@z
16z
1@4@
le&we
1ae@
ijara
lagw
1asae
11@w
1118
11z@
11z@
114@
1156
1166
1178
11&6@
115@
lzan

144@
1456
14e@
1478
14880
1458
1aaa
1516
15z
15z@
154@
15&@

Lo

podiloU N O U o R o)

=om

OGS O e B el PR D0 00 v
=

R LR bR ba ba th A LA A ba ba ba fa
]

-l Ty O Ty O O Oy TR O O O £ O £A ol

1798
18@@
181@
18z@
1836
1846
185@
1868
1&87@
188@
1898
19aa
is1@
isze

REARDY

"GRAFHING ROUTINE
L=R2iLy

PAZE
"GRAFPH OF"Y"NUMEERS

FRINT FRODUCED.

FRINT

FRINT

=1

FOR AR=L TOQ KB EBY I

FRINT INTCAD.

IF R: CRECE-10 GQTO 1Z6@

R GOTO 1ig@

LA

GOaro 11z@

FRINT

NE®T A

FRINT

FRINT

RETURN

TEGRETING ROUTINE

F=1

H1=TIN

IF Sg="R" GOTQ f1&@@

IF Sg="R" GOTO 1Zz@

GOTO 171@

"BUEBELE SORT

FRINT "BUBEBLE SORT ARLGQRITHM: "
NF=C7=0

FGfF R=1 TO ¥-1

FOr B=fA+1 TO ¢

il X |
IF RECAIC

R2{BIGOTO 1428

e "SECONDS SORTING TIME
FRINT N7“"SWITCHES EXECUTED. ©
FRINT C7"COMPRRISONS EXECUTEDR "
RETURN

"DELARYED
FRINT

REFLACEMENT SORT
"DELAYED REFLACEMENT SORT

GOTO 14Zz@

PREZCITY GOTO 1eté

GaTa
GOTO

1a&@
154@

IF L7=J7

R2{LTI=T
GOTO 1%4@

“SHELL - METZNER SORT

FRINT "SHELL - METZNER SQRT:"
N7=CT7=@

Me=%
ME=INT{ME )
IF M&=@ GOTQ
KE=Y-HE

JE=1

16=716
LE=16+NE
C7=CP+l

IF Re(lI€I(=R2{LED
N7 =N?7+1

T=RZ(I16)
RzlI6er=RziLE)
RECLEI=T

Ie=16-M6

IF 16>=1 GOQTO 1&8a@
JE=J6+1

IF JE>KE GOTO
GOTO 179

END

14z@

GOTO t&9@

ir&e

FROM"L"TO"H"EY "

RLGORITHM: "



THIS FROGRAM FRODUCES A NORMALLY

DISTRIBUTED

SAMFLE

DIFFERENT QUTPUT 7TS

GF UF TO zee@ FOSITIVE INTEGERS RCCORDING TO YOUR DEMANDS. DELARYED REFLACEMENT SORT ALGORITHM
@. 967 SECONDS SORTING TIME.
DO YOU WISH TO TIME SORTING ALGORITHMS TVES 96 SWITCHES ENECUTED.
SELECT SCORTING ALGORITHM: 4958 COMPARISONS EXECUTED.
6% Fi1 Fz 7 TE€ F& TV &@  &a
TYFE TQG USE &t &z gz &z &I &3 &4 &5 &7 &g
] EUEBELE &g g &8 &g £9 €9 g@ S@ 91 =z
[ DELAYED REPLACEMENT 9g 93 93 9X 94 95 95 95 9g& 97
S SHELL - METZINEFR g7 98 9g¢ 9% ta@ tee 1@l 1e4 1@l talz
TR leéz 1@F 1@ 16X 1@ 104 1@4 104 1865 1as
TYFE THE FOLLOWING: SAMFPLE SIZE. MEAN. STD. DEY. 185 Lee L1@e  1e@e  1@&  1@7T  1@7  1@s 18 tas
Tiee, 1@a@, 1S5 1@y 148 41@ 141 414 141 1412 112 11z 11z
114 114 L1158 115 11& 115 117 149 12@& 1Z@
le@ tee@ 181 123 12% 127 131 43T 1¥% 149
i1ee RANDOM NUMBERS GENERARTED IN @ 16 SECONDS. DIFFERENT QUTFUT ©G
GERFH OF 1@@ NUMBERS FRODUCED. FROM €3 TO 149 BY I EEEE
MEAN = 1@@ &1 , STD. DEY. = 15 S&79
69 *
71 *
WHART FQRM OF QUTFUT DO YOU WANT? T4 Ry
B ¥k
TYFE IF YOU WANT 7.9
G HISTOGRAM ON TTY ae LEEE R
T NUMBERS ON TTY gs PRy
F NUMBERS ON FILE &y *
TS NUMBERS ON TTVY. SCORTED =14 AN
FSs NUMEBERS OGN FILE. SORTED 9z B s
T N R
181 149 9& &g& €9 &1 1@4 118 131 111 & A
115 1@% 4@1 &2 1z@ 11 &8 187 Lta& 1415 1a@1 L
g% 147 &@ &9 111 97 11 1@z A
185 1@z &4 127 99 11% 1@€ R
&7 97 74 125 114 135 8 1@9 EEE R
1@ 1@4 93 93 11z 1@€ 111 LR
1ex 11@ 73 &€& 1@4 91 1 114 :
i1es g@ 1@€ FE€ 11e &z & 1z *
1@ 1@z 121 1@z Fz tlet 149 *
1286 1114 7t &89 9% 1@e 94 122 R
1e8 %
127 *
1za@
s £
LE& *
1z8
141
14
146

The Systems Approach:

How to evaluate, design, and implement a software application

by John R. Lees

Have you ever thought up an applica-
tion, you know, “Gee, | wish | had a
program to dindle my framistan,” and
started to write it, maybe get a little
code running, but bog down
somewhere and never carry through? If
so, it's quite possible that you were
suffering from a lack of systems
approach. Perhaps the single most
important step in completing a
software project, and the one most
often neglected by the big and little
programmer alike, the systems ap-
proach consists of thinking things
through in advance.

Sure, that sounds simple and ob-
vious (“l thought things through, | want
a program to dindle my framistan”).
However, it isn’'t simple and obvious.
Large “real world” programming proj-
ects spend a significant portion of
their time and budgets in coming up
with a system design. Of course for

your own personal project you're not
going to be worried about things like
how many programmers you can
effectively use during each phase of
the project, and whether you need a
project librarian, but there are a
number of techniques that have been
developed that will be of benefit to you.

I. Iterative procedure of refinement
and repetition. The final result is,
hopefully, a project which will work.

Il. Hardest thing to do is to get a
good overall picture of what you want
before you have it.

A. Think it through; try to imagine
using your completed application.
Try to make a list of everything you
want to be able to do and how you
want to do it.

B. If others are going to use the
application, get their input. Good
idea to talk it over with someone else,
anyway.

Il. If the project is large, break itup
into parts which can be coded &and
tested separately. )

IV. Berealistic in evaluating storage,
time, interface requirements.
Remember you have a small system
and may have to make sacrifices in
your design to get it implemented.

IV. Plan files, storage, subroutines,
etc.

V. Once you get a design, STICK
WITH IT! Do not give in to the tempta-
tion to change things in midstream.
That is the single most prevalent
reason for projects never being com-
pleted.”

VI. Figure out how to test it before
using it. B

*A recent Rand Corp. study (read thorough and
costly) indicates that the ratio of the actual time
to complete a well-planned project compared to
the estimated time is 3 to 1.



Creative Programming Techniques. . ..

Heapsort

Most programming texts present the problem of
writing one or two basic types of sort programs. Are
these generally used in production? Usually not. One
of the most efficient production sort algorithms is
known as Heapsort. In the richly commented BASIC
program below, Geoffrey Chase, OSB, of the Ports-
mouth Abbey School has written a Heapsort routine
for both character string or numeric sorting. Look it
over. Study how it works. And when you want a real-
ly efficient sort routine, use it!

NOTES:

(1) EVIDENTLY THIS CAN BE SPLIT INTO TWO PROGRAMS;:
CAN CUT OUT THE UNNEEDED HALF.

OR YOU

(2) LINE 128 CAN BE DIMENSIONED AS DESIRED.

¢(3) THE ' "TAG" COMMENTS AREN'T NEEDED. SOME BASICS
ALLOW ! , SOME ALLOW * INSTEAD, SOME NEITHERe.

160 REM. KNUTH/WILLIAMS/FLOYD HEAPSORT ALGORITHM.
1ie 1 PAS '74

120 DIM NC158),C$C150)

13¢ PRINT

135 PRINT

140 PRINT

145 PRINT “TYPE C FOR CHARACTER STRING SORT,"

150 PRINT “TYPE N FOR NUMBER SORT. "3

155 INPUT W$

160 N=0 '
163 PRINT

166 PRINT

176 IF W$="N" THEN 480

186 1F W$<>"C" THEN 140 '

START COUNT=N AT @

BAD REPLY

190 J=s=srsesmns st me e < CHARACTER SORT: >----
200 GOSUB 7280 t ASK FOR STOP CODE
219 INPUT S$ ! GET STOP CODE

215 PRINT

220 ! INPUT LOOP:

238 N=N+1

235 INPUT C$(N)

240 IF C$(N)><>S$ THEN 230
250 !
260 N=N-1

265 PRINT

270 !
280 L=INT(N/2)+1

285 N1=N !
29@ 1F L=1 THEN 310
300 L=L-1

303 A$=Cs(L)

306 GOTO 350

310 A3=CS(N1)

315 CS(N1>=Cs$(1)

328 N1=N1-1

330 IF N1=1 THEN 440

END OF INPUTeee

HEAPSORT PROPER:

PRESERVE N, USE NI

MOVE TOP OF HEAP TO END
HEAP IS 1 SMALLER NOW

340 NO, CONTINUE

350 J=L

360 1=J

365 J=2%J ! LOOK FOR "SONS" OF I

370 1F J=N1 THEN 4¢0

380 1IF J>N1 THEN 420

390 IF C$(J)>=C$(J+1) THEN 400
395 J=J+1 ;

400 1F A$>=C$(J) THEN 420

418 C3$(1)=Cs(Jd)

415 GOTO 360

420 C3(1)=A$%

425 GOTO 298¢

430 !
440 Cs(1)=A%

450 FOR 1=1 TO N

453 PRINT Cs$(I) !
456 NEXT 1

460 GOTO 130

470 le=e=mme—ccccccccccccronen-- < NUMERIC SORT: >==-=-
480 GOSUB 720

483
486
490 N=N+1

493 1INPUT N(N)

496 1F N(N)<>S THEN 498
580 N=N-1

585 PRINT

Sl1e !

wN
CHOOSE LARGER "S35ON'

END OF SORTeee

OR REVERSE ORDER:

1S S1ZE OF ACTIVE LIST

LARGER SON REPLACES PARENT

I=N TO 1 STEP

520
525
530
S40
543
546
550
555
560
576
580
590
600
605
610
620
630
648
650
655
660
665
670
680
690
693
696
700
718
720
730
740
750
760

ONLY ONE LEFT? THEN WE!RE DONE.

L=INT(N/2)+1

N1=N

IF L=1 THEN 550

L=L-1

A=N(L)

GOTO 590

A=N(N1)

N(N1)=NCD)

Nl=N1-1

IF N1=1 THEN 680
1

J=L
1=J

J=2x%J
IF J=N1 THEN 640
IF J>N1 THEN 660
IF N(J)<N(J+1) THEN J=J+1
IF A>N(J) THEN 660
N(1)=N(J)
GOTO 608
N(I)=A
GOTO 530
1
N(1)=A
FOR I=1 TO N
PRINT N(I)
NEXT I
GOTO 130
Issssesestsssmadss =====-==< SUBROUTINE: >=c====-=
PRINT "PLEASE INDICATE A STOP CODE--SOMETHING NOT IN YOUR™
PRINT "LIST, WHICH WILL ACT AS AN °'END-OF-LIST® SIGNAL: ";
RETURN
!
END

! FANCY "IF" SYNTAX. COMPARE

390-4060.

TYPE C FOR CHARACTER STRING SORT,
TYPE N FOR NUMBER SORT. ? C

PLEASE INDICATE A STOP CODE--SOMETHING NOT IN YOUR
LIST, WHICH WILL ACT AS AN 'END-OF-L1ST' SIGNAL: ? KNUTH

DAVID AHL, ESQ.
COSMO COMPUTERS
ABPLANALP LTD.
PETRODOLLARS
DMA TRANSFER
CREATIVE COMP.
Me0.S. ABACUS
ALGORI THMS
LEONARDO Pe.
CHINESE REMS.
SORTED STRINGS
NEGe. FULLBACK
STAR TREK, V.2
KNUTH

W ) s e ) ) ) s ) e ) ) e

ABPLANALP LTD.
ALGORITHMS
CHINESE REMS.
COSMO COMPUTERS
CREATIVE COMP.
DAVID AHL

DMA TRANSFER
LEONARDO P.
M.0.5. ABACUS
NEGe. FULLBACK
PETRODOLLARS
SORTED STRINGS
STAR TREK

TYPE C FOR CHARACTER STRING SORT,
TYPE N FOR NUMBER SORTe. ? N

PLEASE INDICATE A STOP CODE--SOMETHING NOT IN YOUR
LIST, WHICH WILL ACT AS AN 'END-OF-LIST' SIGNAL: ? ~1E6
3.1416

22222

2E10

2E~10

66.666

-1ES

-1E6

W) W W )

-100000
2.00000CE-10
3.1416
66.666
22222
2.00000E+10

TYPE C FOR CHARACTER STRING SORT,
TYPE N FOR NUMBER SORT. ?

STOP AT LINE 155

READY



New
ast
Sorting

How to sort extremely fast with a minimum of
comparisons, and a minimum of programming
steps between comparisons.

Richard Hart*

Algorithm

The speed or efficiency of an internal
sorting algorithm is directly related to
the number and complexity of
programming steps which are actually
executed during its operation. Because
all the items being sorted must be
compared to one another to place them
in order, programmers have realized
that by making certain intelligent
comparisons, the total number of
comparisons executed in an algorithm
may be reduced to a theoretical
minimum.

This article starts with the theory
described by Luther J. Woodrum in the
IBM Systems Journal and describes an
algorithm that not only uses a minimal
number of comparisons, but also
executes a minimal ' number of
programming steps between each
comparison.

The algorithm was written to use as
few comparisons as possible, to have
as few steps between each comparison
as possible, to take advantage of
natural sequencing, to preserve the
order of equals (or even the reverse
order of equals), to avoid moving
records around, to use as little memory
as possible (one working array), and to
be a modular, easily understood
program written in BASIC.

29 Concord Ave., Apt. 609, Cambridge, MA 02138
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Fig. 1. Tree number 19, with 19 leaves and nearly equal branches.




\X 0

Fig. 2. Woodrum'’s algorithm for sorting N records with minimal comparing: follow the tree structure and
merge nearly equal linked lists on the way down the branches.

The Forest.

The theory behind the algorithm may
be described in a language of forests,
trees, branches, twigs and leaves.
There is a forest filled with trees of
different sizes. The smallest tree has
one leaf and the largest has no more
leaves than fit into the memory of a
computer. Each tree is very orderly.
The trunk of a tree splits into two
branches of nearly the samessize. If one
branch is larger than the other, it is
always the right-hand branch. Similar-
ly, each branch divides into two more
branches until the branches become
twigs from which leaves grow. Figure 1
is a picture of tree number 19, which
has 19 leaves.

Each tree in the forest is almost a
binary system of its own, but the
leaves are wildly disarrayed. They have
different colors, different shapes,
different sizes, different ages and
different fates. Luckily the leaves of any
particular tree, even the largest, can fit
into the memory of a computer where
they can be arranged by color, by
texture, or by intelligence, and shipped
to any part of the world.

The Mouse.

Even though the computer usually
thought about everything in two ways,
it worked well in the forest. It had
evolved from the Boolean logic of
electrical engineering into a tiny,
nearsighted mouse. She could do
anything. She could climb the trees,
jump from twig to twig; she could think
like a calculator and even read, one
letter at a time.

If someone in the outside world
thought that the leaves of a particular
tree were ripe and wanted them arrang-
ed by taste (from sweet to sour to
bitter) and mailed to his home, the
mouse would begin her work. The
mouse liked the forest. Most people
only saw the wildly disarranged leaves
on the outside, but on the inside, the
trees and leaves were arranged
perfectly for the mouse.

One day the mouse was idling by the
edge of the forest, thinking yes and no,
when a secretary from IMOK telephon-
ed to say that he would like the leaves
from tree 19 arranged alphabetically by
color, xeroxed and sent to his office. He
mentioned that each leaf's exact color
was printed on the leaf exactly two
inches from the tip. This was especially
helpful information for the mouse
because even though she was a whiz
with digits and knew her ABC's, she
was color-blind.




The mouse began to work. She
calculated her course and started
along toward tree 19. She was thinking
nothing at all. Tree Number of o
number low-order twigs Twig list
1 EXIT----
2 1 2
3 1 3
4 2 22
The Spider. 5 1 23
Deep in the forest, at the entrance to 6 2 33
a cave, was a spider who was by 7 1 34
profession a computer programmer. 8 4 2222
Strange as it may seem, he hardly ever 18 g S g g g
saw the mouse, but by looking deep 1 1 2333
into the cave he would imagine where 12 4 3333
the mouse might be. Occasionally he 13 3 3334
would turn around and glimpse the 14 2 3434
forest. In a single instant he would 15 1 3444
imagine it was his own forest, that the 16 8 22222222
binary trees were his as was the mouse. 17 7 22222223 _
Then he would turn back into his cave ]g g g g g%g g g g 2"93:(;"‘”95
and write computer programs. 20 2 53232393 3-leaaf twigs
One day the spider read a modest 21 3 23232333
article by Luther J. Woodrum in the 22 2 23332333
IBM Systems Journal, Vol. 8, No. 3, 23 1 23333333
1969, called “Internal sorting with 24 8 33333333
minimal comparing.” The Woodrum 25 7 33333334
algorithm was written in APL, a foreign 26 6 333433341 3 eaf twigs
language, but the spider liked sorts so 27 S el b and
he translated the algorithm into BASIC, 28 4 34343434( 4 |0qt twigs
his native language. 2 9 24330444
; - 30 2 34443444
Then he noticed two surprising 31 1 s44a4444
things: The Woodrum sort was faster 32 16 222929222299029020209202
than the Shell sort and was also the 33 15 22222229222222223
same procedure he had seen the
mouse go through time after time in the

forest.

The mouse would start on the left-
hand side of a tree and climb until she
reached the lowest branch; she would Fig. 3. Trees are composed of 2-leaf and 3-leaf twigs or else 3-leaf and 4-leaf twigs. Within one of these
climb out that branch until she reached tree groups, new high-order twigs appear in a reflected binary pattern.
the left-most leaf. Then she would
climb from leaf to leaf, looking at each
one and writing something on an
adding-machine tape. So the mouse
was creating linked lists and merging
them! The trees here were perfect for
balanced merges! Every time the

mouse climbed up a branch she would

be figuring out what to do. Then on the

way down to the next branch she would Mirror Number Tree 19

be merging the leaves and branches Counter image of

she had left behind. Figure 2 shows the 124 value carries Generate and Merge

path the mouse was following to sort N

records (19 in this case) with a 000 0 2-twig 0 branches

minimum number of comparisons. 001 4 0 2-twig 1 branch
With a new understanding the spider 010 2 1 2-twig 0 branches

watched the mouse for three years 011 6 g 3-twig 2 b’ancﬁes

climbing the different trees, setting up 1 8 ? ; g g-:w!g S

: ; -twig 1 branch

Ilnkeq lists of length 1 at each leaf, and 110 3 1 2-twig 0 branches

allowing the tree structure to create 111 7 0 3-twig 3 branches

balance merges. It had occurred to the 3

spider in the beginning that it would be

easier for the mouse to jump from leaf

to leaf rather than to follow the limbs

around. He had mentioned this to the

mouse and the mouse had tried it, Fig. 4. The binary counter provides all the necessary information for merging. The reflected value

gamely enough, But the mouse determines how many new leaves to generate and the tally of carries indicates the number of additional

couldn’t see the tree structure below so branches to merge. , _ ,
she had ended up with 19 linked lists of This table shows the correspondence between a reflected binary counter and the sequential merging

that occurs in tree 19. The cutoff value for tree 19 is 5 (from Fig. 3). If the “mirror-image” counter is
length 1 and none of them merged. below 5, generate a 2-twig; otherwise generate a 3-twig.

10



Unsorted
Position records
1 violet
2 indigo
3 orange
4 @ meoooburple
red
6 pink
7 blue
8 brown
9 green
1 grey
11 ) carmine
12 yellow
13 olive
14 black
15 infrared
16 rust
17 crimson
18 white
19 amber
(20)
(21)
(22)
(23)
(24)
(new leaves).

Array L
Before Before 'Before
1st 2nd 3rd
merge merge merge
1* 1 1
2* 1 1
3* 4
S— - I G
1 2 2
2* 3* 3
4+

The starred sequences are newly generated lists one record long

Before Before Before
4th last last
merge merge merge

1 18
3 15
6 6
5 5
5* 1 16
6" 4 4
8 8
9 11
2 10
15 2
17 17
12 12
16 3
11 7
13 13
18 1
10 9
12 12
14 14
7 19
5% 19
6*

Fig. 5. Snapshots of linked lists during execution of the algorithm. The last column shows the final
linked list that begins at position N+1 in array [: (20) 19 14

shows the value of the next location except that the last location points to itself.

7

8

11

... Each location

©CREATIVE COMPUTING

“He can't stand the sight of oil.”

11

The spider busied himself with other
things: he visited other forests with
fibonacci trees and even pure binary
trees, but most of these trees had an
extra branch sprouting from the side to
hold leftover leaves. These trees
weren’'t so good for sorting. His own
mouse always came closest to sorting
with a theoretical minimum number of
comparisons.

The Insight.

One day the spider glanced out of his
cave long enough to see something
curious about the trees in his forest. He
didn’t know exactly what he saw so he
asked the mouse to give him a twig list
for trees 1 through 33. (A twig is
composed of 2, 3 or 4 leaves). He
wanted to see all the twigs at the exact
altitude where the leftmost twig was
less than 4 leaves; see Figure 3.

The spider noticed that this left-most
twig was always a low-order twig and
that the total number of twigs at that
altitude was always an even binary
number. There were two fundamental-
ly different kinds of trees: those with 2
and 3 twigs and those with 3 and 4
twigs.

Now as the spider looked from one
tree to the next higher tree (look at
trees 16 through 23), he noticed that
the high-order twigs sprouted first
from each half of the tree, then from
each remaining quarterand so on, until
all but the first twig was a high-order
twig. The spider immediately realized
he could use this binary pattern to help
the mouse.

At just this moment, the mouse was
on her way to tree 19 to arrange the
leaves for the secretary from IMOK.

The spider picked up a mirror and
met the mouse at the tree. Then the
spider told the mouse what to do:

1. Before you climb the tree,
calculate what the low-order twig will
be. (For tree 19, it's a 2-twig, the first
left-most twig containing fewer than
four leaves).

2. Calculate how many of these
twigs will be at that altitude. (5).

3. Calculate the total number of
twigs at that altitude; this total will
always be an even binary number and
will determine the size of the binary
counter in the next step. (8).

4, Take a binary counter that
counts from 0 to 7 and this mirror.
Climb the tree to the left-most twig and
set the counter to 0. Then proceed to
leap from twig to twig and increase
your counter by 1 each time you leap.
Look at the counter in the mirror and if
that mirror-image value is less than the
number of low-order twigs (5), create
linked lists for a 2-leaf twig; otherwise
create linked lists for a 3-leaf twig.



The Accident.

So once again the mouse followed
the spider’s instructions; she leaped
from twig to twig and wrote on an
adding-machine tape. Then the mouse
climbed down the right side of the tree
and showed the spider what had
happened. The leaves had all been
merged into 8 twigs and the binary
counter had provided some more
unexpected information!

The mouse had noticed that the
counter had clicked every time it
carried a digit. The number of these
clicks corresponded exactly to the
number of merges needed below the
previous twig to merge twigs or
branches into larger branches. Now
the mouse could easily figure exactly
how many leaves were above the twig
and how many branches were below
the twig without leaving the twig! See
Figure 4.

So the spider changed his algorithm
to use the previous twig, combined all
the working arrays into one, and
created a beautiful butterfly merge to
combine leaves into twigs, twigs into
branches and branches into one final
linked list starting at position N+1. In
the end L(N+1) points to the first leaf;

Y Fig. 6. The new algorithm uses the same tree structure
as before, but does not follow the limbs around.

Instead, it can move from twig to twig and
perform the necessary merges. This procedure
allows simplification of the merging algorithm.

Fig. 7. This is the new sorting algorithm. Array L must have room for N+LOG2(N)+2 elements. The
algorithm uses a minimal number of comparisons and a minimal number of steps between each

comparison.
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

CIM N(1000)
PRINT "SORT HOW MANY RANDCM -NUMBERS";
INPUT N

FOR I = 1 TO N

LET N(I) = INT(RND(O)*10000+1)
NEXT I

]

!

REM ENTRY

DIM L(1011) ILINKS: N+LOG2(N)+2 ELEMENTS

LET K1,I,M1,T2,T4 = O

LET J = N+1 'HEAD OF SEQUENCE 1

LET L(1),L(J),K2 = 1

IF N <= 1 THEN 940 'EXIT; NOTHING TOC SORT
LET S1 =N 'NUMBER OF LEAVES

REM CLIMB THE TREE

IF S1 < 4 THEN 320 !LOW-ORDER TWIG VALUE
LET K2 = K2¥%2 !TOTAL NUMBER OF TWIGS

LET B2 = S1/2

LET S1 = INT(B2)

LET T4 = TU4+(B2-S1)*K2

GO TO 250

REM INITIAL CALCULATIONS

LET T4 = K2-T4 !NUMBER OF LOW-ORDER TWIGS

12



340
350
360
370
380
390
400
410
420
430
440
450
460

470
480
490
500
510
520
530
540
550
560
570
58C
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
750
800
810
820
830
840
€50
860
870
880
8G0
900
910
920
930
940
950
960
970
1000
1010
1020
1030
1050

LET B2 = K2/2 'HIGH BIT VALUE OF BINARY COUNTER
REM NEXT TWIG
IF K1 = K2 THEN 940 'EXIT; SORT COMPLETE
LET K1,T1 = K1+1 'TWIG NUMBER
LET B1 = B2 'HIGH BIT VALUE
LET T3 = T2 !PREVIOUS REFLECTED TWIG MUMBER
REM ADD 1 TO REFLECTED BINARY COUNTER AND CARRY
LET T1 = T1/2
IF INT(T1) < T1 THEN 470 !NO MORE CARRIES
LET M1 = M1+1 'NUMBER OF MERGES
LET T2 = T2-B1
LET B1 = B1/2 'NEXT BIT VALUE
GO TO 400 !CARRY ONE
REM TWIG CALCULATIONS
LET T2 = T2+B1 'REFLECTED TWIG NUMEER
IF S1 = 2 THEN 550 '12-TWIGS AND 3-TWIGS
REM 3-TWIGS AND 4-TWIGS
IF T3 < T4 THEN 560 !LOW-ORLCER TWIG (3-TWIG)
REM 4-TWIG
LET M1 = -M1 !DIS-ENGAGE NUMBER OF MERGES
GO TO 630
IF T3 < T4 THEN 610 'LOW-ORDER TWIG (2-TWIG)
REM 3-TWIG
LET M1 = M1+1 !NUMBER OF MERGES
LET I = I+1 !NEXT LEAF
LET L(I),L(J) = I !GENERATE A LEAF
LET J = J+1 'NEXT SEQUENCE HEAD
REM 2-TWIG
LET M1 = MI1+1 !NUMBER COF MERGES
LET I = I+] !NEXT LEAF
LET L1,L(I),L(J) =1 'GENERATE A LEAF
LET LO = J 'HEAD OF OLLER LEAF (LAST LINE)
LET J = J+1 'HEAD OF LATEST LEAF (NEXT 2 LIMNES)
LET I = I+1 INEXT LEAF
LET L2,L(I),L(J) = I !GENERATE A LEAF
GO TC 750 !MERGE LEAVES
REM MERGE TWIGS AND BRANCHES

LET J = J-1 'HEAD OF LATEST BRANCH CR TWIG
LET LO = J-1 'HEAD OF CLDER BRANCH OR TWIG
LET L1 = L(LO) 'HEAD OF SEQUENCE 1
LET L2 = L(J) 'HEAD OF SEQUENCE 2

IF N(L1) <= N(L2) THEN 820 !STAY IN SEQUENCE 1

LET L(LO) = L2 'SWITCH TO SEQUEHNCE 2
LET LO = L2 !TOP LEAF IN SEQUENCE 2

LET L2 = L(LO) 'NEXT LEAF IN SEQUENCE 2

IF L2 = LO THEN 870 'ENC OF SEQUENCE 2

IF K(L1) > N(L2)
LET L(LO) = L1

THEN 770 !STAY IN SEQUENCE 2
!'SWITCH TO SEQUEHNCE 1

LET LO = L1 !'TOP LEAF IN SEQUENCE 1
LET L1 = L(LO) 'NEXT LEAF IN SEQUENCE 1
IF L1 <> LO THEN 750 !NOT END OF SEQUENCE 1
LET L(LO) = L2 !'SWITCH TC SEQUENCE 2
GO TO 880
LET L(LO) = L1 !SWITCH TO SEQUENCE 1
LET M1 = M1-1 !NUMBER OF MERGES
IF M1 > 0 THEN 700
IF M1 = 0 THEN 350
REM GENERATE 2ND HALF OF A 4-TWIG

LET M1 = 1-M1  'RE-ENGAGE MNUMBER OF MERGES
GO TO 630
REM EXIT
LET LO = N+1  !FIRST LINK IN SEQUENCE
]
!
FOR I = 1 TO N
LET LO = L(LO)  !FOLLOW LINKS
PRINT N(LO);
NEXT I
END
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L(L(N+1)) points to the second,

L(L(L(N+1))) points to the third, and
the last link points to itself. See Figure

The Butterfly Merge.

Two things happen as the mouse
jumps from twig to twig. The leaves
above the mouse get merged into the
twig and the twigs and branches
behind the mouse get merged into
larger branches. The butterfly merge
treats each merge the same way. The
heads of each sequence are kept at
positions N+1, N+2, ,
N+INT(LTW(N)+2) after the links
themselves, which are kept in positions
1,2,...,Nof array L.

The merge takes the last two se-
quences in the list and combines them
into one. One wing of the merge
follows sequence 1 and the other
follows sequence 2. The two are
interwoven until the final link points to
itself. Because the heads of each
sequence are kept in the same array
with the links themselves, the merge is
extraordinarily fast. After each merge,
the stack of sequence heads has been
reduced by one.

Generating Leaves.

Each time the mouse reaches a new
twig, she generates new sequences
one item long to correspond to the
leaves of that twig. A two-leaf twig is
produced by creating two one-item
sequences, each pointing to itself.
Then these two leaves are merged
once. A three-leaf twig is created from
three one-item sequences merged
twice. A four-leaf twig is merged from
two two-leaf twigs: The first two-leaf
twig is generated and merged once;
then the number of remaining merge
passes is set to a negative number so
that the merge will be disabled until the
second two-leaf twig is generated and
merged with the first.

After each complete twig has been
generated, merging continues until the
branches behind the mouse have been
linked together. Then the mouse jumps
to the next twig, generates new leaves
and lets the butterfly merge fly by
again.

Now the mouse follows this
procedure all the time. After the spider
watched the mouse a few times, he
turned into his cave and forgot. But
every now and then sunlight shines
through the leaves of the forest,
reflects from the mouse’s mirror and
flashes deep into his cave. See Figures
6 and 7. |



Creative Programming Techniques. .

W Shuffling “®

by John Jaworski
Hatfield Polytechnic, England

When faced with the problem of printing out the
integers from 1 to 10 in a random order (without
repetitions), the following program is an excellent example
of how not to proceed:

100
110
120
130
140

FORI=1TO 10

N =INT(10«RND+1)
PRINT N;

NEXT |

END

As we are taking no precautions against repetitions, we
can be almost certain to get some. In fact, if my rapid
calculations are correct, the probability of getting what we
are looking for is minute: 3.6 x 10% — rather less than 4
correct solutions in 10,000 trials!

Somewhat better, on the face of it, is the next
example. Here we provide an array M, choose a random
integer and only insert it into the array M when we have
checked that this integer is not already present.

Note that statment 100 is superfluous in the BASIC
language, but it is as well to remind ourselves of the nature
of M.

100
110
120
130
140
150
160
170
180
190
200

DIM M(10)

K=1
N=INT(10*RND+1)
FOR J=1 TO K

IF M(J)=N THEN 120
NEXT J

M(K)=N

K=K+1

IF K< 11 THEN 120
MAT PRINT M;
END

Unfortunately, while producing results, this is not at all
economical on time. When the array is almost full, say with
9 numbers inserted, there is in fact no choice at all for the
last element, but only one chance in ten that statement 120
will select the correct integer for us — 90% of the work
done by the program at this stage is wasted. This of course
is more acute when shuffling rather more integers!

One rather more elegant method is the following:
choose ten random rea/ numbers less than 1, using RND.
Associate these with the ten integers 1 - 10 and then sort
them into order, shifting the integers around at the same
time:'

e.g.
BEFORE AFTER
1 0.1 143\ 0.0954 9
2 0.9317 0.1143 1
3 0.5120 0.2671 5
4 0.3367 0.2758 7
5 0.2671 0.3154 10
6 0.8815 0.3367 4
7 0.2758 0.4186 8
8 0.4186 0.5120 3
9 0.0954 0.8815 6
10 0.3154 0.9317 2
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We can sort the real numbers by any sorting method
we have found suitable. Here is a demonstration program
that uses the ‘ripple’ sort (which you may know under
some other name).

100 DIM A(10), P(10) A contains the random

110 FORI=1TO 10 numbers and P the inte-

120 P(l) =1 gers that will eventually

130 A(l) = RND be printed. This loop

140 NEXTI sets up these arrays.

150 L=10 The limit on compari-

160 F=0 sons, L is set to 10, the

170 1=1 flag is set and we begin
our comparisons at the
beginning of the list.

180 IF A(l) > A(I+1) THEN 260 compare adjacent

numbers.

190 T =A(l) if not in order, swap

200 Af(l) = A(1+1) A's . ..

210 A(I+1) =T

220 T =P(l) ,

230 P(lI) =P(I+1) ...swapP's

240 P(I+1) =T

250 F=1 and set flag

260 | =1+1

270 IFI1<L THEN 180 increment and branch back

280 IF F=0THEN 310 if in order, stop

290 L=L-1

300 GO TO 160

310 MAT PRINT P;

340 END

The last example underlines the fact that the more
efficient and more elegant program is not always the
simplest when written out.

ACHTUNG!

Alles Lookenspeepers

DAS COMPUTENMACHINE IS NICHT FUR GE-
FINGERPOKEN UND MITTENGRABBEN. IST

EASY SCHNAPPEN DER SPRINGENWERK,

BLOWENFUSEN, UND POPPENCORKEN
SPITZENSPARKEN.

IST NICHT FUR GEWERKEN BY DAS DUMM-
KOPFEN. DAS RUBBERNECKEN SIGHTSEEREN
KEEPEN HANDS IN DAS POCKETS—RELAXEN
UND WATCH DAS BLINKENLIGHTS.

MIT



Creative Programming Techniques. . .

A Crooked Shuffle

A Case Study in Debugging the Programmer

Alan Filipski

In an article on shuffling in the Jan.-Feb. 1977 issue of
Creative Computing, John Jaworski considered the problem of
generating the numbers from 1 to N in a random order without
repetition (a ““random permutation”’). Both solutlons given in
that article have execution times on the order of N, /.e. shuf-
fling 10N items would take about 100 times as long as shuffling
N items for large N. My first reaction was that there is an ob-
vious way to shuffle in linear time (time proportional to N for
large N). It turns out that there is indeed such a way, but we
have to be a little careful about what is ““obvious.” The fol-
lowing account traces the development of such an algorithm,
pointing out some tempting fallacies along the way.

The germ of the idea is this: We first create an array con-
taining the numbers from 1 to N in order. We then proceed to
destroy that order by interchanging the contents of each loca-
tion in turn with the contents of a location selected in some ran-
dom fashion. To make this idea more precise, we could say

1. Generate an array A containing the numbers from 1 to N
in order.

2. Foreachifrom1toN:
Pick a random integer j between 1 and N and switch A;
with Aj.

Thus every item gets switched at least once and on the
average twice. This would be easy to program and takes linear
time to execute. The method obviously mixes things up so tho-
roughly that we certainly must be getting random permu-
tations. Of course, we could prove it if we wanted to, but proofs
are just pedantic exercises, and besides, we have programming
to do, right? Well, just for laughs, let's try to prove that this
algorithm does what we want.

First, we should clarify exactly what we mean by the phrase
“generating the numbers from 1 to N in a random order without
repetition.” The “without repetition” criterion is easy to verify
because it is a property which must apply to each sequence
generated. The “random order”’ criterion requires a little more
thought, since it is a notion which applies to the entire class of
permutations generated, but not to any single permutation (at
least not without arousing some statistical and philosophical
demons who are better left undisturbed). As a definition of

Department of Mathematics, Central Michigan University, Mt. Pleasant, MI
48859.

15

“random order’”’ we might venture to say that the probability of
the number | appearing in the Jth position should be 1/N for all |
and J between 1 and N. This insures that any number has an
equal chance of appearing anywhere, so the program which
satisfies this criterion must be generating all permutations at
random, right? Wrong. Suppose N =3. Then the possible per-
mutations are:

P,=(123) P,=(213)

P,=(132) Pg=(231) Pe=(312)

Consider a program which outputs P, or P or Py, each with
probability 1/3. This satisfies our proposed criterion, but is ob-
viously not what we mean by a random shuffle, because the
probability of generaging P2, Py or P, is zero. This suggests
that what we really want to say is that our program must gener-
ate any permutation with equal probability (probability 1/n! in
fact, since there are N! different permutations.) Now that we
know what we want, let's see how our program goes about
producing it.

Consider the case when N =3. The program starts with P,.
The first interchange transforms it to either P1, P2, or P3 with
probability 1/3 each. Two more interchanges are then per-
formed on the result giving the final permutation. Since we
have three choices at each of the stages, there is a total of 27
equally likely series of interchanges. Of course, some sequences
of interchanges must produce the same result since only six dif-
ferent permutations are possible. We can represent these suc-
cessive transformations by a tree as follows:

/\
/|\ /l\ /|\

/I\ /I\ /I\ /l\ /I\ /l\ /I\ /|\ /|\

143416524254251

P,=(32 1)

We note that at the final level, P}, P3, and P6 occur four times
each, while P2, P4, and P5 occur five times each. The latter are
therefore more likely to be generated than the former. Of cour-
se, if we were smart, we could have foreseen trouble just be ob-
serving that 6 does not divide 27 evenly.

So it appears that our algorithm does a rather slipshod shuf-
fle. Well, what now? Is the idea bankrupt? Maybe noit. Consider



a modification of the technique: We start with the array A,, A,,
G?,. ..Ay, containing the numbers from 1 through N in order.
e begin as before by interchanging A, with the contents of a
randomly selected location. We now want to set A2 equal to
one of the remaining items. This is the key to the rehabilitation
of the algorithm. We accomplish this by selecting a random in-
teger J between 2 and N and interchanging the contents of A,
with A . Continuing in this way, our algorithm now becomes:

1. Generate an array A containing the numbers from 1to N
in order.

2. Foreachifrom 1to N: Pick a random integer j between i
and N and switch A, with Aj.

If we now display the situation for N=3 in terms of our treee,

If we now display the situation for N = 3 in terms of our tree, we
have:

which is exactly what we want, generating each permutation
with probability 1/n!l. We can now implement the algorithm
with the following program:

100 DIM M(52)

1O LET N=52

120FORI=1TON

130 LET M({l) =1

140 NEXT |

150 FORI=1TO N-1

160 LET J =INT(RND(O)*(N-I + 1)) +1

170 LET T =Ml(I)
180 LET M(l) = M{J)
190 LETM{J) =T
200 NEXT I

210 MAT PRINT M;
220 END

Thus we arrive at an efficient and simple solution to the origi-
nal problem. As you may have guessed, however, the point of
this paper is not the presentation of a shuffling algorithm which
works in linear time (which can be found, for example, in
Knuth’s Seminumerical Algorithms) but rather an illustration of
potential traps along the path of algorithm development. If you
had (as | did) a tendency to swallow the argument that the first
version of the algorithm ““mixes things up so thoroughly that we
must be getting random permutations,”’ you have a bug in your
quantitative intuition. This sort of bug is more insidious than
any program bug since it potentially affects any algorithm you
might develop. The existence of such bugs is not often pub-
licized since it is ever the wont of mathematicians to display
their creations in the austere beauty of their perfected form and
to be ashamed of the false starts and jumpted conclusions along
the way. (The exception here is the “‘paradox’’ which is such a
dramatic and epidemic bug that it has entertainment value.)

If we are to make progress in exorcising these bugs, it be-
hooves us to stop at least and recognize them for what they are.
In the future, would we be more suspicious of a line like the
“mix-em-up’’ argument? Is it clear that the picture of the tree
leads to a proof in the case of the revised algorithm? Is it reason-
able that N =3 should yield a sufficiently general example to dis-
credit the first algorithm, but that N =2 should not? The consi-
deration of such questions would be a first step in the debug-
ging of the programmer.
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Shuffling Revisited

The article on *‘Shuffling,” in the Jan-Feb issue (page 77)
drew a large response from readers who offered shorter or
“more elegant’’ ways of solving the problem. Here are a few
of the letters:

““More Elegant’’

Dear Editor:

John Jaworski’s article, “‘SHUFFLING”’, in the January-
February issue contains a minor error in statement 180. The >
symbol will produce a descending sort rather than the ascend-
ing sort shown in the before-and-after example. This has no
real effect on the outcome except to reverse the order of the
randomized integers.

Shown below are two routines which are more elegant than
the shuffling technique (from the standpoint of requiring less
iterations for a typical run and being more concise in code
length):

The first uses a search technique borrowed from hashing
algorithms rather than performing a sort.

i?g 11:)(1)1\1'{ i\ﬁl(l))frg(;g) A contains a table of in-
120 A(D) = I_ tegers, P will contain the in-
130 NEXTI‘I tegers in random sequence.

The first loop puts the in-

140FORI =1TO 10 tegersin A.

150J = INT (10*RND + 1) Generate a random integer

igg TIF—A.(IJIT 0 THEN 210 lSlSC this inte%er to accless A

ey can through A until you
igg }Fj 1< 1{ THEN 160 find an integer which has not
200 GO TO 160 been used yet.

Place the next integer in the

210P() = A(J) output table and remove this

%%8 ﬁg))(; 10 integer from A
240 MAT PRINT P Print P when all integers are
250 END moved.

The second routine shows how this same function appears
in APL:

David D. Keefe
Tillson, NY

‘““Each Loop Used Only Once”’

Dear Editor:

On reading ‘‘Shuffling’’ by Jaworski in Creative Program-
ming Techniques, January-February 1977 issue, I notice a sort
is required. For longer lists, this can be a time-consuming
routine. Here is a routine to shuffle 52 cards in one pass.
Cards are picked one at a time and each of the remaining
cards has an equal chance of being picked.

100 DIM M(52)

110N=52

120FORI=1TON

130M(I) =1 Enter numbers 1 to N in list
140 NEXT 1 in order.

IS0 FORI=1toN-1
160 R = (N + 1-I)*RND(1)

170 R=INTR) + I Pick number R between I and

180 T=M(R) N.
190 M(R) =M(I)
200M(D)=T Exchange entries I and R.

210 NEXT 1

Each loop is used only once.
James Murphy
Associate Professor
California State College,
San Bernadino, C4A 92407



““Simpler and Smaller”’

Dear Editor:

The article by John Jaworski on ¢‘Shuffling’’ was very in-
teresting. However, I am unimpressed by the little ‘“‘moral’’ at
the end. Several years ago I constructed a card-shuffling pro-
gram based on an explanation of permutation theory based on
a mail-clerk and pigeon holes. I don’t remember the source of
the explanation or its precise details, but I do remember the
algorithm. Translated to BASIC it looks something like this:

DIM M(10)

FORI = 1TO10 Initialize the array—this step

MO =1 is only required once and the

NEXT I program can be used to
generate as many permuta-
tions as you wish.

FORJ = 1to9

K = MQJ)

L=INT ((11-J)*RND+ 1)

MJ) = ML+J-1)

ML) = K

NEXT J

As you can see, the algorithm chooses each element of the
permutation randomly from the numbers not previously
chosen. The advantages over sorting are: (1) less memory is
required (only one vector instead of 2), (2) fewer exchanges
per permutation (no sorting program can beat N—1 con-
sistently), (3) no comparisons at all and (4) the program
itself is much simpler and smaller.

The January February issue was my first experience of your
magazine—I enjoyed it thoroughly! Keep on computing!

Dean Ritchie

Systems Programming Manager
Computing Center

Washington State University
Pullman, WA 99163

“Requires Less Memory and Time”’

Dear Editor:

This letter could be headed ‘A Better Way to Shuffle.”” I
was disappointed to see that John Jaworski omitted one easy
shuffling technique—random indexing—from his treatment
of BASIC programming, and wish to fill the void. To shuffle
an array using random indexing is to choose elements by using
random numbers to calculate addresses. The following
BASIC statement will calculate the address of one of an N-
element array with subscripts ranging from 1 to N. If your
BASIC interpreter recognizes the zeroth element of an array,
then the statement will have to be changed to avoid wasting an
array element.

I = INT(N*RND(0) + 1)

After the Ith element is removed from the array and stored
in a safe location, the array is packed by moving the top
elements down one space, and N is decremented by 1. Another
element is selected using the same method, and the process
repeated until the array is used up. You might think two large
arrays would be needed, one to hold the source array of
elements, and one to hold the shuffled array, but that isn’t so.
Remember that after the Ith element was selected, the remain-
ing elements were packed together to eliminate the gap. That
left a gap at the top of the array where the element would fit
nicely. Packing the array isn’t difficult, either. Because the
shuffled array is supposed to be in random sequence, it really
doesn’t matter what order the source array is in. To pack the
array, remove the unselected upper element from the top of
the array and plug the gap. Putting it all together for a pro-
gram to print nine digit numbers, with no two digits the same,
yields the following BASIC code:

100 DIM A(9)
200 REM FILL THE ARRAY WITH
300 REM THE DIGITS FROM 1
400 REM TO9
500 FORI = 1TO9
600 LETA() =1
700 NEXT I
800 REM THE SHUFFLING ROUTINE
900 FORI = 9TO2STEP —1
1000 LETJ = INT(I*RND(0)+1)
1100 IF J>I THEN 1000

1200LETT = AQ)
1300 LET A(J) A(D
1400 LET A(I) T
1500 NEXT I
1600 FORI = 1TO9
1700 PRINT A(I)
1800 NEXT I
1900 END
This program requires less memory and time than the
routines provided by Mr. Jaworski. Speed and space-saving
are important, especially in a program like BLACKJACK
which shuffles a 52-card deck several times.
William R. Hamblen
946 Evans Rd.
Nashville, TN 37204

“At Random”

Dear Editor:
While looking through the January/February Creative
Computing, 1 noticed the ¢‘Shuffling’’ article (J. Jaworski,
p.77), thought, “‘There, but for the grace of Iverson, goes
10?10,” and turned the page. But then, upon a closer reading
of the magazine, I discovered the same technique advocated on
the very facing page! And with the same ineluctable bubble
sort! This was too much. Even with a good sort, the program
is inefficient. The obvious way to shuffle 10 or any number of
n numbers is: a) pick one at random b) pick one of those re-
maining ¢) continue until none are left. Since the two sets,
picked and unpicked, will always total 10 (or however many)
numbers, we just move the boundary through the array, ex-
changing the number whose place we want with the one we
wish to put there. BASICly:
100 DIM A(10)
IIOFORI=1TO 10
120 A(I)=1
130 NEXT I
140FORI=1TO9
150 K=1+INT (RND*[11-I])

Aisl,2,...,10.

I is the boundary.
K is a random number

160 T=A(l) from I to 10.
170 A(I) = A(K) Exchange
180 A(K)=T

190 NEXT I

200 MAT PRINT A; Done.
210 END

Using the sorting method squares the time (depending on
the sort) and doubles the space (code and arrays) that the pro-
gram requires.

J. Storrs Hall
New Brunswick, NJ

Shell-Metzner Sort vs Hart Sort

Dear Editor:

As sorting is an operation frequently used on our computer
(8K,PDP11/10) I was interested in the article by Richard Hart
(Jan-Feb 1978, pp. 96-101). At present we are using the Shell-
Metzner sort which was described by John P. Grillo (Nov-Dec
1976, pp. 76-80).

This latter sort requiring only about a quarter of the
statements required by method described by Hart. On
comparing sorts within the limitations of our BASIC—
maximum array size 255—1 find the Shell-Metzner sort is also
faster in sorting randomly generated numbers.

Shell-Metzner Method described
Number sorted (Time in seconds) by Hart
21 27
100 48 61
200 121 135

Within these values the Shell-Metzner wins on two counts (1)
compactness of the algorithm and (2) faster sorting.

Perhaps someone who has a computer that can handle larger

arrays could look at comparisons above 200.

Pat Fitzgerald

Winchmore Irrigation Research Station

Ministry of Agriculture & Fisheries

Ashburton, New Zealand
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Programming Techniques:
File Structures

John Lees
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The primary use of general-purpose computers is data
processing, and most of data processing is file handling.
To make effective use of your computer, sooner or later
you'll have to deal with files. So here’s an introduction to
the wide world of file structures.

To begin with, a few definitions: A file is an organized
collection of related information. (A collection of files can
be called a data base.) A file consists of records, all of
which usually have the same basic structure. Each record
can, in turn, be subdivided into fields, or elements.

A file can exist in memory, on paper tape, cassette,
magnetic tape, disk, or any other type of storage. Storage
can be considered in two categories, that allowing only
sequential access (all kinds of tape and some primitive
disk systems); and that allowing random access
(semiconductor or core memory and most disk systems).
Some tape systems purport to have random access, but
random access on tape can only be achieved with
considerable access time and space overhead.

Sequential File

The simplest and most common file structure is
physical sequential. Records are arranged in some order,
one after another in the file, and are physically accessed
in that order. Tape files are by their very nature physically
sequential.

Let’'s consider an example of a sequential file. Say you
want to keep a catalog of all the books in your library, or
all your record albums, musical scores, paintings, or any
similar item. A record in such a file might look like this:

AUTHOR | TITLE | PUBLISHER | ADDRESS | BINDING | PAGES | PRICE | DATE

The file would consist of one such record for each book
in your library. Probably the order in which you would
choose to keep such a file stored would be alphabetical
by the author field (which would be the key field for the
file), but of course you could store it in any order you
wish. The order you decide to use is important though,
since you don’t want to have to sort the file each time you
use it.

Once you set up your library file, you’ll want programs
to add books or delete books and possibly to allow you to
modify a record, although you could get by with deleting,
then adding, to modify. You'll want the capability to print,
say, all titles by one author, or by one publisher, or all
hardbound books, or all books published in 1974.

Two Transports
If you're using tape, you'll need two transports to be
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able to keep the file in order, when you add or delete
records. To do that, you'd write a program to take all the
additions or deletions, sort them and keep them in
memory. Then your program would read from one tape,
writing records out to the other tape until it reaches the
point for an add or delete. It would do the add or delete
and then keep on reading/writing until the entire file had
been processed.

You may have noticed that a lot of space is being
wasted in our sample file. There is only a small number of
different publishers, yet that information is repeated in
every record. Very wasteful! To save space, we could
create two files, one file consisting of a modification of
the records we already have, with the publisher informa-
tion replaced with a code:

‘AUTHDH TITLE .| P-CODE | BINDING | PAGES

PRICE l DATEJ

and another file containing the publisher information:

L P-CODE IPUBLISHER ‘AI]DRESS"

These two files could be used in this way. Put the
Publisher file first on the tape, followed by the Library file.
As the first step in using the Library file, read the
Publisher file into the memory since it is relatively small.
Now, as records are read from the Library file, the
publisher code can be matched up with one in the
Publisher file and the information in the record in the
Publisher file used to print the book listing. This look-up
will be fast since it is done in memory. The small amount
of extra processing time used is well justified by the
savings in file space. This same principle can be applied
whenever a field contains often-repeated information. Of
course the information must be longer than the code
used to replace it. It wouldn’t pay to do this with the date
field, for instance.

Tight Space

If you're real hard-up for space, the leading “1” need
not actually be stored in the date field. Similarly, don’t
store a “$” or even the decimal point in the price field.
Have the program add them when it adds the publisher
information to the book listing being printed. You can
save even more bytes by storing the price and date in
binary and converting. But don’t get carried away if you
don’t need to save the space.

All well and good, but what if you have collections,
such as science-fiction anthologies, and want to be able



to find authors and titles of stories in the collections? You
could do about the same thing we did with publisher
information. Add a code to the author field:

AUTHOR | B-CODE | TITLE | P-CODE | BINDING | PAGES | PRICE | DATE

This new code could mean if 0 then the book is not a
collection, else the code would match up with a set of
records in a short-story file which would give the
contents of that collection.

But that isn’t really what you want. That scheme will let
you list the contents of a collection, but is of no help in
finding out if you have in your library a short story that
only appears in a collection. What to do? You could,
instead of having a separate short-story file, include
these records in the main file. ‘Avoiding redundant
information, you would now have a file consisting of
three different types of records:

] TYPE 0 J AUTHOR l TITLE l P-CODE |smums [PAG_Es | PRICE Inmj

| TYPE 1 j e-coue[ AUTHUH, TITLE [ P-CODE J anmsl

| TYPE ﬂ B-CODE ] AUTHOR | TITLE [

A type 0 record would be a normal book. A type 1
record would be a collection and such a record would
contain an additional field with a book code, which would
match a book code in type 2 records containing the
authors and titles of the short stories in the collection. To
make this file easily usable with a sequential storage
medium, you'd probably want to group all the records
together by types (almost, in effect, giving three files), in
alphabetical order by author within type.

Now if you want to see if K is in your library, the
program would look for a record of any type with Kin the
author field. If the record(s) found with K are of type 2,
then the program would also look for a type 1 record with
matching b-code and tell you what collection the story by
K appears in. If you think that this kind of thing could take
a very long time on a cassette, you're perfectly correct.
But what'’s your hurry?

Faster, Faster

Well, maybe you're writing this system for the school
library and you have a legitimate reason for wanting the
search for a book to take less than half an hour. Hopefully
you can get a disk or two, because you've exceeded the
capabilities of a sequential-file structure. The rest of the
structures we’re going to discuss require random-access
devices.

The drawbacks to the plain old sequential file are
obvious. If you're on Heinlein, you know that Vonnegut is
somewhere further on and that you've passed Ellison.
Vonnegut you'll eventually come to, but Ellison can only
be reached by going back to the beginning and starting
over again. An unhandy state of affairs if speed is of any
importance at all.

Index

So, enter the next bright idea in file structures, the
index. Although the combination of indexes and sequen-
tial files will not, as IBM once tried to convince the world,
solve all problems, it does help a little. Imagine a
dictionary with no way of telling where each letter begins
and you'll quickly appreciate the utility of an index. The
idea is the same with a file. You have the master file and
an index file which contains the information on where

certain categories begin in the master file. This could be
in terms of record number, memcry address, disk sector,
or (shudder) tape block. Now if you want to find Heinlein,
the program looks in the index file and goes right to the
beginning of the H’s. This is of limited use on tape, since
you still have to move all that tape past the read head
slowly enough to count blocks.

With our example, you could also have an index to help
find the groups of short-story records and even the
records for the collections themselves. So your program
could go right to the record or group of records. A
diagram for such a file system might look like this:

Alphabetical Index

n LOCATION
[
®
[ ]

Short Story / Collections Index

LOCATION

(B-CDDE l LOCATIONS OF SHORT STORY RECORDS , LOCATION OF COLLECTION RECORD }

(B-CUDE FLUCATIDNS OF SHORT STORY RECORDS l LOCATION OF COLLECTION RECORD

Library Master File

M’E 0 l AUTHOR , TITLE | P-CODE ] BINDING l PAGES | PRICE | DATE |

’TYPEI y B-CODE | AUTHOR [ TITLE | P-CODE ] BINDING | PAGES [ PRICE | DATE \

‘ TYPE 2 |B-CIJUE [ AUTHOR [mﬂ

Publisher File

! P-CODE LPUBLISHEH l ADDRESS |

Once you've figured out that conglomeration, you'll see
that it saves a lot of work, at the expense of a little storage
space. Using the indexes may speed things up, but a lot
of sequential processing is still required, and the records
within groups must still be kept in alphabetical order,
thus requiring a lot of insert overhead. (Deletes are
simple. Just adopt the convention that a type 3 record
isn’t there and so mark “deleted” records, every oncein a
while- collecting the garbage and squishing things
together.) Also, there are a couple of little bugs in that file
system and a very high maintenance cost associated with
updating all those index records if any of the Master file
records are moved, as they will be each time an insert is
performed.

It is possible to get away entirely from any reliance on
sequential ordering, at the expense of a little more
storage and a little more processing time. But processing
time is cheap and maintaining a sequential file is a
nightmare when you don’t have much memory. So let’s
move on into the realm of list structures, linked lists,
rings, trees, hierarchical files and such things. You ain’t
seen nnthinn votl ]
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